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A DISTRIBUTED EMERGENCY RESPONSE SYSTEM TO MODEL DISPERSION "

AND DEPOSITION OF ATMOSPHERIC RELEASES
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Abstract. Aging hardware and software and increasing commitments by the Departments of Energy and Defense
have led us to develop a new, expanded system to replace the existing Atmospheric Release Advisory Capability
(ARAC) system. This distributed, computer-based, emergency response system is used by state and federal agen-
cies to assess the environmental health hazards resulting from an accidental release of radioactive material into the
atmosphere. Like its predecessor, the expanded system uses local meteorology (e.g., wind speed and wind direc-
tion), as well as terrain information, to simulate the transport and dispersion of the airborne material. The system

also calculates deposition and dose and displays them graphically over base maps of the local geography for use
by on-site authorities.

This paper discusses the limitations of the existing ARAC system. It also discusses the components and
functionality of the new system, the technical difficulties encountered and resolved in its design and implementa-

tion, and the software methodologies and tools employed in its development.
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INTRODUCTION

Background

Federal agencies are charged with operating their nuclear facilities in
a manner consistent with the protection of public health and safety.
This includes the development of emergency response plans in the
event a toxic substance is released accidentally from an operating
facility. In 1972, the Depariment of Energy’s predecessor, the Atomic
Energy Commission (AEC), realized that its response to nuclear acci-
dents could be improved substantially by developing a capability for
real-time estimation of the transport and dispersion of radioactivity
released into the atmosphere. They envisioned that such a capability,
when integrated with various radiation measurement systems, could
help emergency response personnel improve their real-time assess-
ments of the potential consequences of an accident. That vision led to
Lawrence Livermore National Laboratory’s development of the At-
mospheric Release Advisory Capability (ARAC). This capability uses
advanced three-dimensional atmospheric transport models to simu-
late the release of pollutants contained in regional-scale flow systems
and to prepare calculations for dissemination to local accident-
response officials.

The objective of the ARAC project, as designed in 1973, was to pro-
vide real-time predictions of the dose levels and extent of surface
contamination from accidental releases of radionuclides from AEC
nuclear facilities. Since then, increasing commitments by the Depart-
ment of Energy (DOE) and the Department of Defense (DOD), com-
bined with aging hardware and software, have provided the impetus
for a complete redesign and upgrade of the existing ARAC system.
The redesign, which has been underway for the past two years, is
being funded by the DOE and the DOD and should meet our current
goals by the end of 1986.

Since its inception, the ARAC system has responded to over 125 real-
time events and exercises, including the Three Mile Island nuclear
power plant accident, the COSMOS satellite reentries, and the TI-
TAN 1I missile accident. ARAC has also participated in numerous
national and international multiagency exercises. Local authorities
use the graphically displayed dose and deposition calculations to as-
sess health hazards, formulate evacuation plans, and concentrate
measurement and cleanup efforts.

The original computer system, as conceived in 1973, is still in opera-
tion, but about 80% of the replacement software system is also opera-
tional in a production testing environment. The original system will

be replaced in June 1985, at which time the new system will be used
by the operations staff. The remainder of the replacement software,
as well as additional capabilities, will be completed by 1987. The
term existing system is used throughout this paper to refer to the
system being replaced.

Limitations of the Existing System

The existing ARAC system is distributed on five host processors at
the ARAC central facility and can interface with four minicomputer
systems located at supported sites across the continental United
States. The central facility processors include a Control Data Cor-
poration (CDC) 7600 for executing atmospheric dispersion models
and producing graphics products; a Hewlett Packard (HP) 1000 for
requesting, receiving, and decoding meteorological data from the Air
Force Global Weather Central (AFGWC), which archives meteoro-
logical data from around the world; a Digital Equipment Corporation
(DEC) 11/34 for preparing input parameters and data for the models;
a DEC 11/23 for transmitting inputs to the remote CDC 7600, and a
DEC 11/40 for collecting site-tower meterological data, forwarding
graphics products to the accident site, handling two-way operator
messages with the sites, and archiving meteorological data from both
the HP and the sites. Each of the four supported sites has a DEC 11/
04 for collecting meteorological data, displaying graphics products
produced at the central facility, displaying a simple atmospheric dis-
persion model using site-tower meteorological data, and handling
two-way operator messages with the central facility. When accidents
occur at nonsupported sites, a telecopier is used to transmit the
graphics products.

Despite its capabilities, the existing ARAC system has several limita-
tions. It depends on the five computer systems and associated pe-
ripheral devices being functional for the duration of the event or
accident. It is also labor-intensive and requires operators to move
data and products from machine to machine. Thus, its advertised
response time of one hour can only be met if everything functions
correctly. In addition, it requires that operators be familiar with the
hardware, as well as the widely differing styles of man-machine in-
terfaces, on all five machines. Because the man-machine interfaces
were not designed for occasional users and emergencies and exer-
cises occur only a few times each quarter, operators can forget how to
use the system and the initial set of calculations can often take more
than one hour.

When the existing system was being developed, modemn program-
ming practices were not employed. There were separate program-

*This work was performed under the auspices of the U.S. Department of Energy
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mers for each machine, and software developers tended to design
their part of the application somewhat independently, thereby ne-
glecting necessary communication about interfaces. For example,
while one programmer would express wind speed in meters per sec-
ond, another would express it in miles per hour, When the system
was eventually integrated, there were gross incompatibilities in the
interfaces and considerable retrofitting was needed to make the sys-
tem operational. Incorrect assumptions were also made as to who
should be accountable for which portions of the software, and some
user requirements were not met. As a result, the final product, al-
though operational, was disappointing.

To maintain the existing system, programmers had to be familiar
with the operating systems and languages used on all the computers.
Since parts of the system were developed in machine language with
little documentation and no modern software development tools, it
was difficult to find and train replacement personnel to maintain the
software. Thus, maintenance suffered and the software deteriorated
significantly within about five years.

Requirements for the New System

Because of the complexity, limitations, and deteriorated state of the
existing ARAC system, we launched a four-year program to replace
the system and to upgrade its capabilties, choosing for ourselves sev-
eral goals and constraints. Our major goal for the new system was to
improve the effectiveness of our response, which led to the following
specifications for the new system:

® Results and graphics from a preliminary calculation have to be
ready for transmission to a site within 15 minutes after initial
notification.

® More sophisticated calculations have to be ready within the first
hour and every hour thereafter until the release is over.

@ The system must be able to handle up to three emergencies
simultaneously.

® The system must support a 24-hour/day staff of highly trained
emergency response personnel,

¢ The system must support up to 100 remote site systems.

® The system must respond rapidly to accidents at arbitrary loca-
tions where no site computer system is available.

Remote site support would take the form of a small computer system
that would enable sites to communicate with the ARAC central facil-
ity, display products generated at the central facility, manage local
meteorological data, and continuously and automatically calculate
andlgraphically display a simple atmospheric dispersion model
result.

To ensure that the new system could recover and respond despite
hardware/software failures, we needed backups in hardware, soft-
ware, sources of meteorological data, and product delivery systems.
In addition, we wanted the new system to be easier for operators and
meteorologists at the central facility and novices at the site facility to
use and understand. Modem programming practices would be used
to develop a more modular system that had clearer interfaces to fa-
cilitate integration and that could simplify the addition of enhance-
ments and reduce the cost of maintenance. Since we wanted to have
effective project management, this goal was to include a workable
implementation strategy, good estimates of the time required to de-
velop software, and automated tools to aid in the scheduling of soft-
ware development tasks and monitoring progress.

SYSTEM CONFIGURATION
AND FUNCTIONALITY

The basic system configuration at the central facility consists of
two Digital Equipment Corporation (DEC) VAX 11/782 computers,
using three DEC LSI 11/23s as communications front-end processors.
DEC PC350 computers and meteorological towers with Handar
microprocessors are used as a site system at supported facilities. For
more detailed information on the hardware configuration, see Ap-
pendix A.)

The site system computers can send accident information to ARAC,
communicate with ARAC meteorologists, archive and send meteoro-
logical observations to the central facility, make simple model cal-
culations, and display results graphically. In addition, they can re-
ceive sophisticated model calculations in thé' form of contour plots

from the central facility and display these calculations graphically
over locally stored base maps.

Exercises or emergencies are initiated by filling out an on-line acci-
dent questionnaire (Fig. 1). This questionnaire can be filled out by
local authorities using the site system or by a meteorologist on the
ARAC central system, who may receive the mformation by tele-
phone. Responses 1o the questionnaire are sent immediately to the
central system. As soon as the central system receives notification of
an alert, a microprocessor-based emergency page/alarm system with
voice synthesizer alerts ARAC personnel, and automated collection
of meteorological data is initiated for stations near the release. This
automated data collection will continue, on a scheduled basis, for the
duration of the exercise/emergency. When enough meteorological
data have been collected, a preliminary dispersion calculation is per-
formed automatically. All of these actions can occur without human
intervention before the questionnaire is completed.

Expetience has shown that more than half of all requests for ARAC
assessments come from sites. In such cases, local au-
thorities can phone ARAC for accident information. A Xerox 4951
telecopier, attached to one of the central facility’s two VAX 11/782
computers, will alow ARAC to send VAX-produced graphics prod-
ucts and textual documents directly from the VAX to the accident
site.

Most of the meteorological data for ARAC are requested from the
AFGWC at Offutt Air Force Base, Nebraska, and from Carswell Air
Force Base, Texas. Within two minutes, we can request, receive, and
decode current meteorological observations for anywhere in the
world. Data that are not current, but are less than 24 hours old, can
be retrieved in 5 to 10 minutes. When the link with AFGWC is down,
we can request data automatically from a local organization known
as WeatherNet. The system also requests data from remote ARAC
meteorological towers that are accessible from either ARAC central
or the ARAC site system. Supplementary data from local (sometimes
portable) instruments are also used. These supplementary data are
entered through either the site or central ARAC system.

ARAC uses many simulation models, but the two primary models are
MATHEW and ADPIC. MATHEW uses surface, tower, and upper-air
wind data to develop an initial, three-dimensional, mass-consistent
gridded wind field that includes the effects of topography. Using this
wind field, the ADPIC code, a three-dimensional particle-in-cell
transport and diffusion code, calculates the time-dependent disper-
sion and deposition of inert or radioactive pollutants. Inputs to these
codes consist of questionnaire information, station location, meteoro-
logical data, local topography, and site- and problem-dependent pa-
rameters. The products of these models are in the form of numerical
results, as well as device-independent graphics. The model-prepared
graphics for use by local officials consist of plots showing the con-
tours of varying pollutant concentrations overlaying the local geogra-
phy. However, other graphics can be generated to aid meteorologists
at the ARAC central facility.

A digital terrrain database from the United States Geographical Sur-
vey (USGS) supports the topography portion of the system at the
central facility. In three minutes we can extract (for model input) the
local topography, at 500-m resolution, for any area in the continental
United States. If we have no terrain data, we can either assume flat
terrain or manually enter the terrain elevations. USGS digital line-
graph data are also available to support the geography portion of the
system. These data are divided into separate overlays for water bod-
ies, rivers, streams, roads, railroads, political boundaries, etc. Cur-
rently, we are in the process of developing a system to extract local
geography for anywhere in the continental United States. In the
meantime, we are using a digitizing system to generate base maps for
accident sites. Local authorities need this information to orient the
contour plots with respect to local landmarks.

TECHNICAL CONSIDERATIONS

Communications Considerations

A good electronic communications system is of primary importance
in a distributed application like ARAC, whose hardware components
are physically located around the world. Early in the project we de-
termined that the VAX hardware could not handle our remote com-
munications problems. One problem is that the AFGWC transmits
requested meteorological observations to us as though we were a
teletype with special teletype characters, no protocol, and no
XON/XOFF capability to throtile the transmission of data. Since the
multi-tasking VAX does not easily handle applications that require
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Fig. 1. Diagram of ARAC emergency response system.

interrupt response, we decided to use communications front-end pro-
cessors to offload communications tasks from the VAX. Note, how-
ever, that the overhead in software development required to manage
multiple communications front-end processors with multiple lines is
considerable and something we would have preferred to avoid had
an alternative been available.

The right protocols was another consideration. We chose DDCMP, a
DEC standard protocol to communicate with the remote site systems.
DDCMP currently exists as both a hardware product (in microcode)
and a software product for the VAX, but we needed it to communi-
cate between the LSl 11/23 communications front-end processors
and the PC350 site system, DEC had led us to hope that they might
provide DDCMP support on the PC350, but the capability never ma-
terialized and we were forced to write our own DDCMP for both
machines. If we had the decision to make again, we would have used
a simpler link-level protocol between the LSI 11 and the PC 350. We
were able to use DECNET, a standard DEC communications proto-
col, to communicate between the VAXs and the LSI 11/23s. While we

could not convince AFGWC to develop or use a new protocol, the
AFGWC was willing to communicate with us using the protocol now
being used to communicate with the National Oceanic and Atmo-
spheric Administration (NOAA). Thus, we are currently developing
an LSI 11 version of the NOAA protocol to use on our end of the link
with the AFGWC.

Our next consideration was whether to write a logical link communi-
cations system or a message routing system. Although a logical link
system is more versatile, our goal was not versatility, but a single-
application ARAC system. In addition, the logical fink communica-
tions software would have required more development. When we
considered that we might have as many as 39 physical links to the
communications front-end processor at any one time, each of which
could have multiple logical links, we felt that the potential number of
concurrent processes (including the models and application pro-
grams) was more than the VAX could handle. Consequently, we
chose a message routing system.
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The user interface to communications was another consideration. We
decided that we did not want communications software imbedded in
code throughout the system, so we wrote a user interface. A single
user routine provides the node, message type, and message. The
message type indicates whether the message to be transmitted is a
text message or a file specification. This software ensures that the
message or file is delivered. It queues all messages until they are
acknowledged and automatically resends messages that are not ac-
knowledged. It also routes received messages and files to the appro-
priate receiver process. If a receiver process does not exist, it creates
one.

Another important consideration for the new system was how to
establish and maintain a communications link between a site and the
central system during an emergency. In a real emergency local phone
lines get busy, making it difficult to establish a connection. Once
established, the connection should not be dropped, except by oper-
ator command, until the problem terminates. At supported sites, we
can enhance our ability to establish connections during an emer-
gency by obtaining special phone numbers for the site system. Our
communications software also employs the concept of a line opened
permanently vs a line opened temporarily. Whenever a questionnaire
for an emergency or exercise is filled out, a line is opened permanently
in software. When the problem terminates, this is changed to opened
temporarily. Lines opened temporarily are disconnected in
communcations software when no traffic has occurred for a default
time period. Lines opened permanently can only be disconnected by
explicit operator command.

Parallel Treatment of Multiple Problems

Because the system has to handle multiple problems simultaneously
on the same computer, we had to assign different priorities to each
problem so the more important problems would run faster. We did
this by associating a level of response with each problem and setting
priorities based on the levels of response—normal, data collection,
assessment, exercise, alert, and emergency. The priorities for all pro-
cesses associated with a particular problem are set on the basis of
their level of response.

For multiple problems to run simultaneously, multiple copies of a
particular program must be run simultaneously. That means that the
different copies of a single code must be executed using different data
sets. This is accomplished by using logical names for all files in the
system, When a problem is started, the logical names needed by the
programs are assigned to physical disks, directories, and filenames.
The physical names are determined by the names of the sites for
which the problems are being run.

Communications with Background Tasks
and Interprocess Communications

Although the system runs with minimal user intervention, the mete-
orologist is free to interact with the system at will. Therefore, the
system was designed so that much of it hibernates in the back-
ground, detached from any terminal, ready to respond to operator
commmands and other discrete asynchronous events. Systemwide,
all software for communications and for requesting and decoding
meteorological data runs continuously in the background. Back-
ground processes are also initiated for managing each problem until
it is terminated. For example, filling out a questionnaire for a particu-
lar problem causes the following processes to be started
automatically:

@ The selection of meteorological stations relevant to the problem,
e The issuance of meteorological data requests for those stations
and, if the data are not received, automatic requests for the same
observations from alternate sources.

® Continued data requests for those stations at default intervals in
the future.

® Dialing and connection to the corresponding site.

® The preparation of preliminary calculations of the dispersion and
deposition of released material.

Interprocess communications between tasks and with background
tasks became a key technical issue for this system. The VAX architec-
ture supports four basic methods which we use for interprocess com-
munications: event flags, mail boxes, global sections, and a lock man-
ager. In the following paragraphs we briefly describe these methods
and our use of them.

Event flags. These binary, single-bit flags allow separate processes to
synchronize and control processing by setting, resetting, and examin-
ing event flags.

Mail boxes. Mail boxes can contain one or more queued messages.
Multiple processes can write to a single mail box. Writing to these
mailboxes can cause one process to notify another process that there
is new mail for it to read. This allows the receiving process to hiber-
nate until it is notified. A single process can be written to service
asynchronous notifications from multiple mailboxes and/or other
asynchronous events (e.g., completion of input/output, or the expira-
tion of a timer). This capability is used extensively to allow one task
to service many applications to facilitate the sharing of code and
databases and to synchronize these activities.

Global sections. Global sections can be used as a shared memory
access to a file, and multiple applications can map to the same file in
memory. After a program calls a single system service to map a
global section, the file is treated as an array in memory. Since an
application, physically, has only a window into the file, the VAX
architecture takes care of paging in referenced data and updating
them in the disk file. The VAX architecture also opens the disk file
when the first application maps the global section and closes the
global section disk file when the last application disconnects from the
global section. This feature is highly useful because it allows the user
to intervene in automated background tasks. For example, the meteo-
rological stations to be used for a particular problem are selected
automatically while the questionnaire is being filled out and are
stored in a global section library. The automated background process
that requests meteorological data for stations at specified intervals
until problem termination has access to this library. At the same time,
the meteorologist can interactively add, change, or delete stations in
this library, which is shared with the background processes.

With the VAX 11/782, we can use global sections to allow model
calculations to run on the attached processor while the graphics dis-
play process runs on the primary processor and accesses the results
of the calculations in a global section in shared memory. Global sec-
tion can also be used to affect the processing of a task while it is
running. For example, a global section table of communications pa-
rameters is maintained in memory. An interactive communications
operator process can update these parameters to set a node down for
service, to change the time delay for retransmitting messages that
were not acknowledged, to cancel a waiting text or file request, etc.
These changes will take effect immediately without having to restart
communications.

Lock manager. The lock manager allows synchronization of access to
one or more resources and is based on the principle of semiphores in
granting and denying locks. Once a resource is locked, access is de-
nied, thereby allowing a single process to update or control the up-
dating of multiple resources simultaneously. This feature is extremely
useful for input/output where multiple processes need to read and
write to the same database concurrently or when a single transaction
must update multiple databases simultaneously.

Data Consistency Between
Distributed Processors

Data consistency is a requirement in a distributed environment. For
example, the location information of a site meteorological tower can-
not be contained in only one database, The site system needs this
information to run local calculations. The central system also needs
this information to associate with an observation, whether the ob-
servation is received through the site system or directly from the
tower. When key information must be stored on both systems, we
have tried to provide a means for verifying that the information is
consistent in all places. For example, the location of the meteorologi-
cal tower is forwarded to the central system with every observation
and then validated against the same information in the central sys-
tem library. When a questionnaire is filled out at the site, site in-
formation is forwarded for verification. To handle the slight differ-
ences in values that result because of the different hardware being
utilized, we established error tolerance windows. Our design goals of
minimizing the redundant storage of data and using verification
strategies for all information that must be stored redundantly were of
the most value in this area.

One data consistency problem we have yet to solve is the fact that
the tower configuration is often site-specific. The addition or
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recalibration of instruments or an increase in collection frequency can
result in modifications to the Handar tower microprocessor program,
which is then reloaded from the site system to the tower. ARAC
central needs to know when such modifications occur so we can have
some control. We would also like to maintain the latest Handar pro-
gram for each site so we can reload the tower from ARAC central if
the site system is unable to reload it.

Another data consistency issue is the synchronization of time. We
chose Greenwich Mean Time (GMT) as a standard because all stan-
dard meteorological data are reported in GMT and it is unambiguous
across all time zones. Since site systems may be physically located in
any time zone, local authorities are asked whether the time being
entered on a questionnaire is GMT, local standard time, or local day-
light time. Then, before this information is archived and sent to the
central facility, a site-specific time-conversion factor is used to con-
vert it to GMT.

The ARAC central system and all site systems and towers are syn-
chronized to GMT. The VAXs, site systems, and Handar
microprocessors have an internal clock with battery backup. To ver-
ify and adjust its internal clock, the VAX uses a hardware device to
intercept the radio signals that report GMT. Whenever connections
are established between the central system VAX and the site system
computer, the site system clock will be validated against the VAX
clock. Whenever the tower is accessed, the internal dlock is checked.
If the clock on the tower is in error, the tower program is automati-
cally reloaded with a new clock value. Since 15 minutes of observa-
tions are lost every time the tower program is reloaded, we use a
window to allow an error tolerance and only reload when the error
exceeds the tolerance. One problem we have not resolved on the
central system is the fact that the timer used for comparison may not
be accurate if the connection to the site system is delayed on the
communications front-end processor.

Other data consistency problems involve differences in national and
international units of measure. To facilitate the entry of information,
we have allowed for most conceivable units. Once received, these
units are converted to standard units of measure for archiving and
display. By sharing a common data dictionary during development,
we ensured that data in both the central and site systems were stored
in the same format.

Human E Factors
(i.e., Ergonomics)

Since more than half of all emergencies and exercises occur at
nonsupported sites, all the capabilities of the site system also had to
be resident on the central system so that the ARAC meteorologist
could perform the functions normally performed at the site (i.e., enter
questionnaire information and supplementary meteorological data).
To make it easier for the ARAC meteorologist to help a novice site
user fill out forms, we wanted the two systems to look as much alike
as possible. However, the software for developing forms (i.e., DEC
Forms Management Software) on the two systems was slightly differ-
ent, and the expertise of the meteorologist and novice user differed
radically. This meant that forms that could easily be understood by a
novice at the site were too tedious for the ARAC meteorologist. In-
dicative of the difficulty we had in this area was the fact that we had
to iterate three times on the design and implementation of the forms
before we arrived at an acceptable tradeoff of uniformity and
functionality.

Error Handling for Background
and Distributed Tasks

Error handling was also a problem. While interactive processes used
brief but descriptive error messages, the maintenance programmer
needed more detailed information as to where the error occurred,
what the code was trying to do when the error occurred, and a
traceback of called routines. A background process also required a
way to communicate errors to the operations staff and/or a
maintainance programmer. We accomplished this by developing a
common error routine with a logical name assigned for output error
messages. This allowed the developer to assign the logical to his
terminal so he could examine any errors that occurred. In production
the logicals were assigned to a shared file designed to hold system-
or problem-wide error messages. Key errors that occurred on the re-
mote site system were also formatted into operator messages and

sent to the central system, whose maintenance and operations staff is
responsible for fixing problems that occur on the site system..

Testing Difficulties

Developing and debugging detached distributed processes, some of
which respond to asynchonous events, was more difficult than we
had antidpated. The VAX has an interactive debugger that can be
used during initial development. When a programmer begins testing
the process in a detached mode, however, the debugger can no
longer be used. In addition, some processes were highly dependent
on run-time events; therefore, it was often difficult to create the
events that needed to be tested. Some time-dependent events were
also difficult to debug since timers expire artifically when one at-
tempts to run the process with the interactive debugger. Heavy use of
our shared error-reporting routine helped determine the scenario that
caused an error, but recreating the event could still be difficult.

Once the communications software was in production, it was difficult
to test changes and enhancements because the hardware had to be
physically attached to either the production software or the software
being tested, Therefore, we had to bring the production communica-
tions software down in order to bring up a test version of the soft-
ware. This was also true for other portions of the central system
software. While we could simulate the receipt of meteorological data
or other information from communications, testing with live informa-
tion required that we bring down the production software to try new
releases.

Backup Systems

In case of hardware or software failure, we have to move problems
quickly from one hardware/software component to another. Since
our choice of DEC VAX cluster architecture allows us to access the
same disk files from either VAX, the backup machine can restart at
the point the primary machine failed. Putting our communications
front-end processors on Ethernet also allows us to access them from
either VAX.

We have both a primary and a backup source for obtaining meteoro-
logical observations. If the requested data are not received within the
specified time interval, they are requested from the backup source.
The primary source for world meteorological data is the AFGWC,
and its backup is WeatherNet. The primary source for tower data is
the site system, and the backup source is the tower.

Project Management

Effective project management includes a workable implementation
strategy, good estimates of the time required to develop software,
and automated tools for scheduling software development tasks and
monitoring progress. Although we tried several project management
tools, we found them to be of limited use for software development.
Most are based on the philosophy of predecessor and successor tasks
(i.e., laying the foundation before putting up the walls). On a soft-
ware development system, one could schedule development of every
software component to start at the same time, given enough re-
sources. Because of our limited resources and a four-year develop-
ment plan, we found it useful to schedule intermediate deliverables
according to a preferred priority. The criterion used to determine this
priority was centered on replacing entire components of the system
and on eliminating its dependence on and vulnerability to the exist-
ing hardware. We then scheduled preferred, rather than required,
predecessor and successor tasks.

Most project management tools also assume that a resource (ie, a
person) can be assigned to any software development task and move
from task to task with no loss of performance. Software development
tasks require control of what resource is assigned to what task,
particulary when different skills are required to develop different
software components. Usually, that resource must also complete the
assigned task, without interruption, before it is assigned another task.

Halfway through the four-year development cycle we began to use
the project management software of Apple’s LISA personal computer
to produce an overall diagram of how the software components
would come together. We then used it to schedule, report, and man-
age the development and integration of the intermediate compo-
nents. This proved to be extremely valuable when we had to inte-
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grate components of the central system, site system, and communica-
tions together at the same time since the people involved in the
integration were members of different development teams.

Another consideration for project management was the choice of a
common software development methodology. In this case, we chose
Yourdon (De Marco, 1978; Page-Jones, 1980), which provides a
method for building a paper model of the system. The model is then
verified with users and developers of interfacing processes before the
code is written. (For more information on Yourdon, see Appendix B.)
The use of a common methodology with walkthroughs enhanced
communications between developers, improved the quality of the
final product, and increased the quantity of reusable code. It also

produced a more modular product that simplified the addition of
enhancements. Maintenance was easier because the common meth-
odology produced documentation that all developers could readily
follow. Comunon software development tools and libraries made it
easier to comprehend and access other people’s software. A software
librarian was also a valuable asset. Our software librarian ensured
that all software and documentation were complete and promptly
checked into our library.

SUMMARY

The lessons ARAC learned during the development of its first distrib-
uted emergency response system have been incorporated in the de-
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Fig. 2. ARAC hardware configuration.
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sign of the new system, which offers greater flexibility and the ability
to handle future needs for many years to come. Communications was
the hardest problem to solve. Front-end processors solved our hard-
ware problems, but the software needed to control the processors
required a large overhead in additional software. Interprocess com-
munications techniques were valuable for communications between
processes and for interactions with background processes. Data con-
sistency between the separate processes and processors had to be
insured in code rather than rely on humans to enter it consistently.
Human engineering factors were important in designing consistent
interfaces to all interactive software, but different levels of user ex-
pertise required different interfaces. Routing error messages to users
when software is detatched or resides on separate processors is also
an important design consideration. Testing is difficult when the hard-
ware that must be used for production is needed for testing. De-
tached processes are also difficult to test. A method for falling back to
backup software and hardware systems is also an important design
consideration.

We expect to complete development of this new system in 1986. At
that time, the VAX architecture will be seven years old and we will
have to begin considering new architectures and new capabilities for
the next-generation ARAC system.
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APPENDIX A. HARDWARE CONFIGURATION
FOR THE NEW SYSTEM

Host computers. Our host computers (see Fig. 2) for the central facil-
ity consist of two VAX 11/782s (using VMS). One VAX is used for
operations, and the other is used for backup and software develop-
ment. A single VAX 11/782 consists of two VAX 11/780s with shared
memory, Jobs involving primarily input/output (I/0) run in the pri-
mary processor to which all the peripheral I/O devices are attached,
and jobs whose primary function is not I/O, but calculations, run in
the attached processor. This scheduling is performed by the operat-
ing system transparent to the programmer. In the ARAC system, a
model execution consists of meteorological data inputs, calculations,
and graphics outputs. The meteorological data and graphics portions
of the process run in the primary processor while the computations
run in the attached processor. A VAX 11/725 with laser printer is
used for office automation and for the preparation of technical
documents.

The two VAX 11/782s are clustered through a star coupler. Attached
to this cluster, through a CI bus, is a 1.3-Gbyte disk farm. The disk
farm is used to store the terrain and geography databases, meteoro-
logical data archives, the ARAC system software, and the VAX op-
erating system. Files on the disk farm are available for read or write
from either VAX. This includes a single copy of the VAX operating
system, which is shared by both VAXs. The VAX 11/782s share an
additional 700 Mbytes of dual-ported disk space, as well as 280
Mbytes of local disk space that that can be shared, through the clus-
ter, for read or write from either VAX.

Communications front-end processors. Three DEC LSI 11/23s, which
are used as communications front-end processors running under
RSX11S, are available to either VAX through Ethernet hardware, us-
ing Digital Equipment Corporation’s DECNET software. Each LSI
11/23 supports 11 dial-up lines and 2 leased lines. The dial-up lines
are used to dial to and from the site systems and meteorological
towers and are capable of handling 300- or 1200-baud communica-
tions. The two leased lines, in reality one multiplexed line that han-
dles one 300- and two 9600-baud ports, are used to request meteoro-
logical data (at 300 baud) from the AFGWC and to receive (at 9600
baud) meteorological data and products.

Site systems. The site systems are DEC PC350 professional comput-
ers that run under POS, an RSX-based operating system. This system
has a color monitor, a dot-matrix printer, a 10-Mbyte internal hard

disk, and an internal 300/1200-baud modem. Some site systems also
communicate by leased line, at 300 baud, to a Handar 540A micro-
processor used for collecting and archiving data from instruments on
a meteorological tower.

Meteorological towers. Each meteorological tower consists of one or
more levels of meteorological (i.e., weather) instruments with an at-
tached Handar 540A microprocessor to collect and store approxi-
mately 10-days worth of observations. Each tower is attached, by a
leased line at 300 baud, to a local site system. It also has a dial-up
port that the ARAC central communications front-end processors can
use as a backup to obtain meteorological data when the link to the
site system is down.

Xerox Telecopier. A Xerox 495! telecopier attached to one VAX and
available to the other, through the cluster, gives ARAC the capability
to transmit VAX-produced graphics products and textual documents
directly from the VAX to a remote telecopier at the accident site.

Page/alarm system. The page/alarm system uses a microprocessor
with a voice synthesizer to give voice-synthesized messages to oper-
ators in the computer center. On command, it calls on-call personnel
by phone or radio-page devices with a voice-synthesized message,
informing them that hardware or software is down or that they are
needed in the ARAC center.

APPENDIX B. YOURDON STRUCTURED
ANALYSIS AND DESIGN

The software development staff consisted of about 10 computer sci-
entists, 2 programming technicians, 3 engineers, and 5 meteorolo-
gists. Project management viewed a common development method-
ology as essential for software development. The goals for this
methodology were to:

® Present the functionality for the proposed software in a way that
would assure the user that requirements were being met.

® Define the interfaces between the various software components.
® Provide a common format for presenting and documenting
software.

® Improve the quality of the analyzed system and the individually
designed components.

® Simplify maintenance and the addition of new capabilities.

The software development methodology they chose to use was
Yourdon (DeMarco, 1978; Page-Jones, 1980), which consists of two
basic components: structured systems analysis and structured soft-
ware design in conjunction with a walkthrough process.

Structured Analysis

Yourdon structured analysis uses data-flow diagrams, a data dictio-
nary, and mini-requirement specifications to design a system and
state its requirements. The data-flow diagrams present a layered look
at system processes and interfaces. The methodology is based on the
theory that modeling data transformations instead of functionality
produces a better system design. The data dictionary defines, in one
place, all the data elements, records, files, etc. in the system. The
mini-requirement specifications state the transformations required to
produce outputs from the inputs.

Structured Design

Yourdon structured design uses a structural chart that looks very
much like an organizational chart. This chart depicts the boss module
and the calling structure for the subordinate routines. Data passed
between the routines are shown on the structural chart. Pseudo-code
is written for each module it depicts.

One of the premises of the Yourdon methodology is that developers
who build a fairly complete paper model of the system before writing
code will find it easier to add modifications and corrections to the
paper model than to the coded system. People who attend
walkthroughs of the paper model are users who determine if the
software will meet their requirements, software developers who
work on interfacing processes, and peers who review the quality of
the paper model. The paper model is updated throughout develop-
ment and becomes the final documentation, eliminating the need to
document software after development.



